In this paper, we make use of the properties of the umbilic to research circle Section question of quadric in3-dimensional euclidean space. 文章利用脐点的性质研究了二次曲面的圆截口问题,并给出了与二次曲面交线为圆的圆截口的方程的一种求法。
A conjecture on hyperplanes in Euclidean space 关于欧氏空间中超平面族的一个猜测
Generalized Pythagorean Theorem in n-dimensional Euclidean Space 关于n维欧氏空间上的广义勾股定理
A few good necessary and sufficient conditions are given by using length relation for symmetrical transformation on Euclidean space. 利用长度关系给出了欧氏空间的变换为对称变换的若干个充要条件。
Introduction to Harmonic Analysis in Euclidean Space 欧氏空间上的调和分析问题
A kind of External Product Definition in High Dimension Euclidean Space and its Application 欧氏空间中一种外积定义的拓广及其应用
You all have a sense of what a flat space is, Euclidean space is. 大家都多少知道平面空间是什麽,就是欧几里德空间。
Distance-based and density-based clustering algorithms in Euclidean space can be used in this framework. 欧几里德空间内基于距离、基于密度的聚类算法均适用于本框架。
Representing rational cubic circular arc by normalized totally positive or generalized Ball methods Improvement on Construction of Orthonormal Basis in Some Subspace of Euclidean Space 有理三次圆弧的标准正交基与广义Ball基表示欧氏空间子空间的标准正交基求法改进
A Method of Establishing Duality Principle for Euclidean Space 欧几里得空间建立对偶原理的一种方法
The gradient extension of bilinear systems in Euclidean space 欧氏空间上的双线性系统的梯度扩张
A New Technique to Design Polynomial Time Approximation Schemes in Euclidean Space 一种在欧氏空间设计多项式时间近似方案的新技术
On the Vector Product of Three Vectors in 4-Dimensional Euclidean Space and Its Application 四维欧氏空间中的向量积运算及其应用
Internal Implication and Expansion of Euclidean Space and Symplectic Space for Bogus Symplectic Space 欧氏空间与辛空间关于伪辛空间的内蕴和扩张
It has been proved that the nature of independence exists in the axiomatic system of Group 、 Euclidean space 、 distance space and topological space. 本文证明了:群、欧几里得空间、距离空间和拓扑空间的公理系统的独立性。
In this course we will introduce the basic properties about curves and surfaces in three dimensional Euclidean space. 课程目的:介绍空间中之曲线与曲面的相关理论。
Therefore, these points are "homogeneous" because they represent the same point in Euclidean space ( or Cartesian space). 因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。
The Cauchy-Crofton Formula in Euclidean Space of Higher Dimension 高维欧氏空间中的Cauchy-Crofton公式
The Generalization of Metric Equations in the High-Dimensional Euclidean Space and Their Applications 高维欧氏空间中的广义度量方程及其应用
The specular reflection is a very important linear transformation in Euclidean space, and it has a special geometrical explanation in geometrical space. 镜面反射是欧氏空间中一类很重要的线性变换,在几何空间中有着极其形象的解释。
Ptolemy theorem is extended to n-dimensional Euclidean space for application. 最后,作为应用将托勒密定理推广到n维空间。
Mathematically it corresponds to a linear transformation for a set of points in the Euclidean space. 从数学意义上讲,这种权值学习相当于欧氏空间中对一组点进行了一个线性变换。
In this paper, we study the uniqueness on closed convex hypersurfaces in Euclidean space. S. S. 本文研究欧氏空间中凸闭超曲面的唯一性,得到了S.S.Chern,J.Hano&C.C.Hsiung(1960)关于欧氏空间中凸闭超曲面的唯一性定理的一个推广。
Utilization symmetric bilinear function gave a good few sufficient conditions for transformation of Euclidean space to be linear. 利用对称双线性函数给出了向量空间的变换为线性变换的一系列充分条件,进而导出了欧氏空间的变换为正交变换、对称变换、反对称变换、共轭变换的一系列判别条件。
A nonexistence theorem is established for F-harmonic map with finite F-energy from Euclidean space to any Riemannian manifold. 建立了从欧氏空间到任何黎曼流形的具有有限F-能量的F-调和映照的非存在性定理。
This coordinate system is in a way a generalization of Cartesian coordinates in Euclidean space. 这种坐标系统可以看成Euclidean空间的笛卡尔坐标的一种泛化。
Second, we completely classify ideal immersed hypersurfaces of an Euclidean space. 其次我们完全分类了欧氏空间中半对称的理想超曲面。
The traditional method solves this problem in Euclidean space under the Lagrange system, which involves solving higher orders of partial differential equations and faces the difficulty of handling the boundary conditions. 在该问题的研究中,传统的方法是在拉格朗日体系下欧几里德空间中进行问题的求解,不可避免地带来了高阶偏微分方程的求解和边界条件处理难等问题。
First of all, the paper considers both Euclidean space and road network distance matrixes. 首先,本文考虑了欧氏空间和公路网络两种距离模型。